Home |
SUMMARY: We will describe how to count in the discrete measurement space in terms of P(E) = 1 events. Our Abacus counts only P(E) = 1 events. ![]()
What we have been trying to do is to describe
a given system without having to use the
conventional coordinate frames, such as
Cartesian, Spherical, or Cylindrical. We
suspect that origin is not accurately
measurable due to the observer's
limitations. And therefore we introduced
a discrete measurement space based on an
observer's capacity.
One may also think of it as an introduction of a minimum quantum (observer1-observer2), whose value is based on the maximum of the observer's capacity. What does this quantum mean we do not know yet. We have established the origin in the discrete measurement space, we called j-space*. Then we should be very specific how the count is progressed from the origin or “zero”, based on an established criterion. We define the criterion for progression of the count as P(E) = 1 or PE1 event, where P(E) = 1 implies that the probability P(E) of an event E taking place, is equal to 1. Only when a PE1 measurement is completed by an observer, we should progress the count to next integer, i.e. "0" a PE1 event, is incremented to "1" which has to be another PE1 event. We can not increment the count from a PE1 event to a PE<1 event.
Therefore we have two important
considerations before the
description of a system is
developed, first we have to define
the conditions leading to
establishment of the origin and
then we have to increment the
count based on PE1 events only**.
Within the discrete measurement space we have to appreciate the importance of a PE1 measurement. An example of such case will be the determination of a circle by two observers of different capacities, one is a bug constrained to crawl on the circumference of the circle and making measurements and other is a human. In the case of an unlikely event the bug may have completed all the measurements, i.e. all the outcomes are determined, a PE1 event is completed. And the bug can develop an algorithm based on its measurements to interpret the result, whatever it could be for the bug. The human at the other hand knows that it is a circle, and draws conclusions from it without making measurements.
We note that the human observer does
not apply a measurement force to
make a determination of circle
whereas bug has to. This is an
important consideration for an
observer to be efficient, that is, "an efficient
observer does not apply a
measurement force to make a
measurement or an observation".
This criterion leads to optimum use of the resources while making a measurement, an optimization which is a fundamental requirement in nature.
We have
another concern. What if the
circle being measured, is drawn
infinitesimally thin? Then
neither bug nor human observer will
be able to measure it at their
existing resolutions and therefore
they will both arrive at the same
conclusion that the circle does not
exist, but circle does exist.
Therefore a PE1 event has taken
place but it is determined to be
non-existent because of the
measurement limitations, represented
by observer's inability to determine
the origin with absolute
accuracy. The
possibility that a PE1 event has
occurred but can not be measured due
to observer's limitations is quite
worrisome. Measured
Numbers
We are going to make out description more specific to the observer's capacity. We have already mentioned that observers with with different capacities, will be measuring the values of 0's, ∞'s and the interval [0, ∞] differently. We will attach a subscript to the numbers to signify the measurement space specific to the observer's capacity. For example an observer who can measure "null" will have infinite capacity. We will call such observer Obsi (i for infinite) and we denote the interval measured by Obsi as [ 0i, ∞i ]. Similarly we denote the observer with finite capacity as Obsj and the interval measured by Obsj as [ 0j, ∞j ]. We have to keep in mind that Obsj represents a pair of observers. It is important to note that numbers 0j, 1j, 2j,.........,∞j represent the "measured numbers". The measured numbers will represent a picture of less or more details for an observer of capacity greater or less respectively than that of Obsj, because the definitions of origin will be different for each observer. At the same time 0j will be measured as 0j and 1j will be measured as 1j and so on, by the observers of identical capabilities. We will get used to these notations.
In order to measure <the null>, an
observer requires infinite capacity which is
equivalent to saying that the observer of
finite capacity will have to measure an
infinite information space, where the term
"information" represents an abstract notion
we will try to resolve. We further represent this infinite information space by a "true-point". A true-point can be thought of as a disc without a boundary, an abstract region whose characteristics can not be measured. We will need a quantum toy based on the particle in a box analogy to play with this concept. ______________________ * i-space represents an infinite information space, an infinite source, or an exact source. ** For example, we
can think of second universe only when we
have completely measured the first one, a
PE1 event. We keep in mind
that natural numbers begin with "1". The
concepts of "0" and negative numbers apply
only when the time-axis has been initiated
due to entropy. ![]() ![]() Information
on www.ijspace.org is licensed under a Creative
Commons Attribution 4.0 International License.
|
1 orange
consists of billions of cells, 1 cell consists of billions of atoms, 1 atom contains billions of elementary states......., 1 universe contains billions of oranges, 1 source contains billions of universes, Have we counted "one" yet? - A limerick from the Bugworld, Unknown Author. |